92 research outputs found

    Motion of a vortex sheet on a sphere with pole vortices

    Get PDF
    We cons i der the motion of a vortex sheet on the surface of a unit sphere in the presence of point vortices xed on north and south poles.Analytic and numerical research revealed that a vortex sheet in two-dimensional space has the following three properties.First,the vortex sheet is linearly unstable due to Kelvin-Helmholtz instability.Second,the curvature of the vortex sheet diverges in nite time.Last,the vortex sheet evolves into a rolling-up doubly branched spiral,when the equation of motion is regularized by the vortex method.The purpose of this article is to investigate how the curvature of the sphere and the presence of the pole vortices

    Proceedings of the 35th Sapporo Symposium on Partial Differential Equations

    Get PDF
    conf: The 35th Sapporo Symposium on Partial Differential Equations (Room 203, Faculty of Science Building #5, Hokkaido University , August 23-25, 2010

    Proceedings of minisemester on evolution of interfaces, Sapporo 2010

    Get PDF
    conf: Special Project A, Proceedings of minisemester on evolution of interfaces, Sapporo (Department of Mathematics, Hokkaido University, July 12- August 13, 2010

    The geometry of a vorticity model equation

    Full text link
    We provide rigorous evidence of the fact that the modified Constantin-Lax-Majda equation modeling vortex and quasi-geostrophic dynamics describes the geodesic flow on the subgroup of orientation-preserving diffeomorphisms fixing one point, with respect to right-invariant metric induced by the homogeneous Sobolev norm H1/2H^{1/2} and show the local existence of the geodesics in the extended group of diffeomorphisms of Sobolev class HkH^{k} with k2k\ge 2.Comment: 24 page

    On the analyticity and Gevrey class regularity up to the boundary for the Euler Equations

    Full text link
    We consider the Euler equations in a three-dimensional Gevrey-class bounded domain. Using Lagrangian coordinates we obtain the Gevrey-class persistence of the solution, up to the boundary, with an explicit estimate on the rate of decay of the Gevrey-class regularity radius
    corecore